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In the paper, a kinematical model of the robot moving on uneven terrain has been presented.
Configuration of the robot placed on uneven terrain is described, presenting the redundant
set of variables that create the state of the robot. Inverse kinematics tasks have been de-
fined, which as a result of various assumptions, gives the robot configuration. To solve the
kinematics tasks, adequate closed-loop equations have been defined. Velocity equations of
the point of the wheel contact with the ground have been presented with respect to the
velocity of the platform itself and velocities of the robot actuators. Assuming constraints of
the wheel movement causing a no-slip condition, dependencies between those velocities have
been determined. This allowed one to determine velocities of the robot drives, so that the
platform moves in the way specified by the user.
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1. Introduction

Mobile robots are a subject of research around the world. The main task performed by such
robots is broadly understood as transport of goods and, sometimes, people as well. Numerous
examples can be found of wheeled tracked robots as well as walking or even flying robots.

In the recent years, most often mobile platforms are used to automate warehouses or pro-
duction facilities, where moving items from a place to place is the most important task. The
main type of locomotion, in this case, are wheeled robots (Avilés et al., 2018; Bonnafous et al.,
2018; Wise et al., 2018). This is the most effective way of travelling in a flat field. Sometimes,
however, obstacles encountered by the robot do not allow further movement, and the only way
to overcome the obstacle is the detour.

Inspection is another example of a task for mobile robots. Here, commonly, hybrid tracked
chassis systems are used (Novák et al., 2018). It allows one to overcome obstacles such as stairs.
Tracked robots in comparison to wheeled ones move significantly slower.

A more universal way of locomotion on terrain with unevenness is gait. Walking bipeds
(www.bostondynamics.com/atlas), quadruped robots (Grand et al., 2010), and also those made
with more limbs (Townsend, 2011) can be found in the literature.

The combination of wheel suspension and walking robots gives a hybrid locomotion system.
Wheeled-legged robots have the advantages of both types of locomotion. They can move quickly
on wheels, driving on a flat ground. In addition, when such a robot encounters an obstacle that
prevents further driving, it can overcome it by walking. Furthermore, an active wheel suspension
allows levelling of the platform. Wheeled-legged robots are a subject of research in many research
centres all around the world (Bałchanowski, 2016; Grand et al., 2010; Ylönen and Halme, 2002).

At Wrocław University of Technology, a prototype of a wheeled-legged robot (Bałchanowski,
2016; Sperzyński and Szrek, 2013) was designed and built. It has a specific wheel suspension
system which simplifies the levelling task. Simulation of robot movement has been a topic of
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the research for many years (Bałchanowski, 2016; Chakraborty and Ghosal, 2004; Sperzyński
and Gronowicz, 2017). The paper presents the kinematical model of this mobile robot, allowing
motion planning on uneven terrain.

2. System description

The described wheeled-legged robot in (Bałchanowski, 2016) consists of four identical limbs
placed along the platform (Fig. 1a), where each of them ends with a driven wheel. The limb
has mobility equal to four. Two linear drives s1 and s2 are used to manipulate the position of
the wheel along the mobile platform. They are used for levelling of the platform or for walking
(Fig. 1b). The wheel position manipulation mechanism is planar, allowing the wheel to be
displaced only in the plane of the limb frame at A, as shown in Fig. 1b. The next two angular
actuators θ3 and θ4 are used to steer and drive the wheel. The axes of rotation of both drives
go through the center of the wheel – point F and, therefore, do not affect its position.

Fig. 1. (a) Described wheeled-legged robot, (b) kinematic scheme of the robot limb

Fig. 2. Kinematic characteristics used to level the robot platform, (a) workspace of the robot limb,
(b) wheel level characteristics as a function of the linear actuator

The dimensions of the limb were selected in such a way as to obtain a sufficiently large work-
space (Fig. 2a) (Sperzyński and Szrek, 2013; Bałchanowski, 2016). The s1 actuator is responsible
for changing the value of the angle θ1. It is mainly used to change the vertical position of the
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wheel. Figure 2a shows the trajectory of the center of the wheel when the strokes of the s2 linear
actuators are fixed and the drive s1 changes over its entire range. Parameters of the limb were
selected so as to obtain a rectilinear trajectory of the center of the wheel for fixed particular
actuator positions s2 = const . As can be seen, being closer the center of the workspace, the
trajectory of the point F approaches a straight line. The characteristics of the vertical position
of the wheel, depending on length of the drive yF (s2), are similar to linear ones (Fig. 2b). This
characteristic corresponds to the trajectory marked in blue in Fig. 2a. This fact simplifies the
platform levelling control system, because for this purpose one drive per limb is used. The second
linear actuator s2 is only responsible for changing the angle θ2. The assumption is that it should
be used to perform gait, when it is necessary to move the wheel horizontally. Figure 1b shows
that the change in angle θ2, with a fixed stroke of s1, leads the point F along the arc with the
center at point B and radius equal to BF .
The kinematics of the walking robot are described in a similar way as in the case of parallel

manipulators. The effector is the robot platform, and the ground on which the robot moves is
the base of the mechanism. The effector is connected to the base of the mechanism by means of
several kinematic chains – the robot limbs. The location and orientation of the mobile platform
defines the set of X task variables. Subsequently, each kinematic chain introduces θi joint va-
riables that determine configuration of the limb. In the case of wheeled robots, the connection
of the robot limb to the base is a nonholonomic constraint and, therefore, will be described by
additional contact variables ci excluded from the joint variable space.
The robot description, platform configuration in space and its limbs as well as contact condi-

tions with the ground create a set of variables hereinafter referred to as the state of the robot q

q = [X,θ, c]T X = [pP ,ϕP ]
T θ = [θ1, . . . ,θnL ]

T c = [c1, . . . , cnC ]
T

where: pP it is the location of the platform (xP , yP , zP ), ϕP – platform orientation in space
defined by three, yaw, pitch and roll angles (ϕY P , ϕPP , ϕRP ), nL – amount of the robot limbs,
nC – number of wheels in contact with the ground.
On the robot platform, the {P} frame has been defined. It is placed in the middle of the

platform (Fig. 1a). The x̂P axis is positioned along the platform, and its direction indicates the
front of the robot. The axis ŷP is set towards the left side of the platform (indicates lest limbs).
These axes define the platform plane πP . The X vector contains location variables and platform
orientation angles that describe the {P} frame relative to the global frame {G}

{P} : GAP =

[
GRP

GpP
0 1

]
GPP = [xP , yP , zP ]

T

GRP = RZ(ϕY P )RY (ϕPP )RX(ϕRP )

where GAP – transformation matrix of the frame {G} to the platform frame {P} consisting of
the rotation matrix GRP and the location vector

GpP , Ri(a) – matrix of rotation around the
i-th axis by an angle of the value of a.
On the πP plane, there are local coordinate systems {Li} of the limbs. and they are located

symmetrically in relation to the axis of the platform system {P}. The orientation of the limb
systems is set perpendicular to the plane of the πP platform, so that the axes ẑLi lie in this plane.
The limbs are numbered in accordance with Fig. 1a. At F , the center of the wheel, the {Wi}
wheel local frame, is defined. The parameter vector θi contains variables describing configuration
of the limb and transformation LiAWi the wheel system {Wi}, from its base {Li}

θi = [s1i, s2i, θ3i, θ4i]
T =⇒ LiAWi
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It was further assumed that the wheel contact with the ground is a point contact (class V
kinematic pair), and thus it should be described with five parameters. They were named as ci,
and for each wheel in contact they are variables

ci = [c1i, . . . , c5i]
T

In order to describe contact variables, solid models of the ground and wheels must be defined.
By performing dimensional analysis, the number of closed-loop equations needed to describe the
robot was determined. For one limb in contact with the ground (nL = nC = 1), the dimension of
the variable vector is equal to dimq = 15. The mobility of a single kinematic chain of the limb
connecting the platform to the ground is P+LiWT = 9. The difference shows that six independent
loop equations should be defined for each of the robot limbs in contact with the ground in the
form of

φi(X,θi, ci) = 0 where φi = [φ1i, . . . , φ6i]
T (2.1)

The inverse kinematics task is to determine the configuration of kinematic chains (variables
θi and ci) at a given location and orientation of the platform – variables X. This task can
be solved for each limb independently. In the case of a mobile robot, this task is to lower the
limbs until the wheels are in contact with the ground. Analysing the size of the variable vector
for one limb, the difference between the number of equations and the number of variables is
dimθi + dim ci − dimφi = 4 + 5 − 6 = 3, which means that to solve the task, three variables
from θi has to be set. It has been assumed that ci contact variables are determined by solving
the kinematics task at a particular drive position.
It was assumed that the s2 actuators and wheel orientation – θ3 and θ4 of each limb were

fixed in a particular position. Such a stroke s1 of the linear actuator and all contact variables ci
should be found. This ensures the point contact of the wheel with the ground (Fig. 3a).

Fig. 3. The way of solving the inverse kinematics task, (a) determination of limb configuration to be in
contact with the ground, (b) kinematic scheme of the robot limb

In Fig. 3b, it is shown how for the assumed initial points on the circumference of the wheel
and on the surface of the ground the wheel is lowered until the contact constraints are met (2.1).
In order to solve the inverse task for the presented robot, the procedure should be repeated for
each limb separately (Fig. 3a).

2.1. Point contact models of the wheel surface and the ground

The terrain was modelled as a surface element, described parametrically, depending on two
parameters uG and vG. The surface will be defined in the {G} ground coordinate system. The
location of any point S belonging to the ground surface is expressed as follows



Simulation of motion of a mobile robot on uneven terrain 545

GpS = fG(uG, vG) =




fxG(uG, vG)
fyG(uG, vG)
fzG(uG, vG)



 fG : R
2 → R

3 (2.2)

Figure 4a shows an example of a terrain surface. Respectively, the local coordinate system {CGi}
located at the point S can be defined given by the transformation matrix GACGi, such that its
axis Gx̂CGi and

GŷCGi defines the plane tangent to the surface at this point. The surfaces will
be defined as convex hull, i.e. the unit vector GẑCGi will be pointed outside the body of the
element (Fig. 4a). The GACGi transformation matrix, defined using the uG and vG parameters,
is expressed as follows

GACGi =

[
GRCGi

GpCGi
0 1

]

(2.3)

where

GRCGi =
[
Gx̂CGi,

GŷCGi,
G ẑCGi

]
GpCGi = fG

Fig. 4. (a) Definition of the coordinate system defining the tangent plane to the ground surface,
(b) contact conditions of two surfaces

At the point S, two vectors fuG and fvG, tangent to the parametric surface, can be defined
and will define the πG tangent plane to the ground surface

fuG =
dfG
duG

fvG =
dfG
dvG

Using the vectors that span the plane πG, the axis
Gx̂CGi is defined as

Gx̂CGi =
fuG

lfuG
lfuG =

√
fTuG · fuG

The normal vector GẑCGi to the πGi plane is defined as the product of the tangent vectors fuG
and fvG

GẑCGi =
1

lnG
(fuG × fvG) lnG =

√
(fTuG · fuG) · (f

T
vG · fvG)− (f

T
uG · fvG)

2

The orientation of the GŷCGi axis is given by the vector product

GŷCGi =
(
GẑCGi ×

Gx̂CGi

)
=
lfuG
lnG
fvG −

fTuG · fvG
lfuGlnG

fuG
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which fully defines the {CGi} coordinate system. Similarly, in the case of the wheel, its surface is
defined by the parameters uWi and vWi via the wheel shape function fWi (analogously to surface
definition (2.2)). The shape of the tire is defined in the wheel local coordinate system {Wi}. The
{CWi} system, which describes the contact point relative to the wheel, as in the case of the
ground, is defined parametrically according to relationship (2.3). The model of point contact of
the wheel with the ground forces the πG and πWi planes (tangent to both bodies at the point
of contact) to be coplanar. The ẑCGi and ẑCWi axes will then be opposite (collinear), and the
local contact systems {CGi} and {CWi} will be rotated relative to each other by a certain
angle Ψi (Fig. 4b). The transformation matrix from the global system to the wheel contact
system (between bodies in contact) is defined as follows

GACWi =
GAWi ·

WiACWi =
GACGi ·

CGiACWi (2.4)

where the contact frames are placed at the same point, so CGipCWi = 0, and the rotation matrix
between these systems is given by the dot product

CGiRCWi = RZ(Ψi)RX(π)

Dependencies (2.4) can be transformed into a form that gives the location and orientation of
the wheel relative to the ground by describing the wheel contact with the ground

GAWi =
GACGi(uGi , vGi) ·

CGiACWi(Ψi) ·
CWiAWi(uWi , vWi) (2.5)

The contact is, therefore, defined by a set of five contact parameters (variables) ci defined as
follows

ci = [uGi , vGi , uWi , vWi , Ψi]
T

which is consistent with the accepted fifth-class contact kinematic pair model between the wheel
and the ground. Dependency (2.5) expresses the location and orientation of the wheel frame {Wi}
relative to the ground frame {G} if the contact variable vector ci is known.

2.2. Closed-loop constraints equations of the robot limb

Relationship (2.5) determines the position of the wheel coordinate system. The wheel frame
transformation matrix can be determined, on the other hand, by the X and robot drives θi.
Transforming the {G} frame to the frame of the platform {P}, followed by the limbs {Li}
frame, and then the wheel {Wi} coordinate system, gives

GAWi =
GAP ·

PALi ·
LiAWi (2.6)

The first three loop equations take the form

φ1i,2i,3i =
GpP +

GRP ·
(
PpLi +

PRLi ·
LipWi

)
+ GRP ·

PRLi ·
LiRWi · fWi − fG = 0 (2.7)

The next three equations should be determined from the orientation of contact coordinate
systems. The next one results from the condition for the collinearity of the x̂ or ŷ of both contact
systems {CGi} and {CWi}

φ4i = det
[
fuG fvG

GRWi · fuWi

]T
= det

[
fuG fvG

GRWi · fvWi

]T
= 0 (2.8)

The ẑ axes of both contact systems must be opposite to each other, so their sum gives the
zero vector

ẑCGi + ẑCWi = 0 =⇒ φ5i =
∥∥(fuGi × fvGi) +

GRWi · (fuWi × fvWi)
∥∥ = 0 (2.9)
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Based on the transformation matrix given by equation (2.4), the rotation matrix by the angle Ψi
between the contact systems {CGi} and {CWi} can be obtained

CGiRCWi = RZ(Ψi) ·RX(π) =
CGiRG ·

GRCWi

=⇒ RZ(Ψi) =
CGiRG ·

GRP ·
PRLi ·

LiRWi ·
WiRCWi ·RX(π)

(2.10)

If constraints (2.8) and (2.9) are met, then the rotation matrix CGiRCWi will be in the form of
a matrix of rotation about axis ẑ, so the last loop equation giving Ψi angle can be written as:

φ6i = Ψi − arctan
sinΨi
cosΨi

= 0 (2.11)

where the values of the function sinΨi and cosΨi will be taken from the expressions of the
rotation matrix given by equation (2.10). Equations (2.7), (2.8), (2.9) and (2.11) form a system
of six closed-loops equations φi for one limb of the robot in contact with the ground.

2.3. Robot platform velocity equations

To determine robot motion on a defined scene, the derivative of closed-loop contour equations
(2.7) for the position of the wheel relative to the ground was derived. Differentiating equation
(2.5), the following equation has been obtained

GpWi = fG −
GRWi · fWi

∣∣∣
d

dt
=⇒ GṗWi = ḟG −

GṘWi · fWi −
GRWi · ḟWi (2.12)

where the expression of the derivative of the jṘi rotation matrix can be replaced by the angular
velocity matrix = jΩi =

j Ṙi ·
iRj , and the derivative of the point location is the velocity

GṗWi =
G vWi .

Transforming this expression to the form jṘi =
jΩi ·

jRi, gives the equation of speed in the
form

GvWi +
GΩWi ·

GRWi · fWi = ḟG −
GRWi · ḟWi = vSLPi (2.13)

The left-hand side of the equation represents the velocity of a point on the surface of the wheel
that at the given time t = τ lies at the point of contact {CWi} and is permanently located on
the surface of the wheel. The velocity vSLPi, therefore, expresses the wheel slip relative to the
ground. Differentiation of (2.6) gives both linear vWi and angular ΩWi velocities

GvWi =
GvP +

GΩP ·
(
GRP ·

PpWi

)
+ GRLi ·

LivWi

GΩWi =
GΩP +

GRLi ·
LiΩWi ·

LiRG

(2.14)

Further, by substituting equation (2.14) to the equation for slip velocity (2.13), the following
equation has been established

GvSLPi =
GvP +

GΩP ·
GpCWi,P +

GRLi ·
(
LivWi +

LiΩWi ·
LipCWi,Wi

)

where GpCWi,P is a vector defined from the location of the platform frame {P} to the location
of the contact frame {CWi} expressed in the global coordinate system {G}. The condition that
the wheel does not slip means that the velocity of the wheel contact point with the ground is
zero, vSLPi = 0. This constructs the condition by which the limb drive rates can be determined

GvP +
GΩP ·

GpCWi,P = −
GRLi ·

(
LivWi +

LiΩWi ·
LipCWi,Wi

)
(2.15)

By determining the linear and angular velocity of the Ẋ platform, the inverse kinematics task can
be solved by determining the velocities θ̇i for each limb separately as in the case of determining
the configuration. The path and velocity of the robot platform has to be defined too.
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2.4. Desired path of the mobile platform

The movement of the mobile platform is defined along a given flat curve that defines the
trajectory of µP . An additional coordinate system {P0} is defined, which defines the πP plane on
which the robot platform will move. The {P0} system is fixed relative to the global coordinate
system (GAP0 = const ). The robot path is given by the fP parametric curve depending on one
parameter uP (Fig. 5)

GpP =
GpP0 +

GRP0 · fP (uP )

fP (uP ) = [fxP (uP ), fyP (uP ), 0]
T fP : R→ R

3
(2.16)

The µP trajectory of the robot platform determines how the robot moves along the given path
relative to time t. For this purpose, the robot speeds GvP and

GΩP are defined depending on
the uP parameter. The linear speed of the robot platform is defined along the tangent vector tP .
Differentiating relationship (2.16), we obtain

GvP =
GRP0 · tP · u̇P (2.17)

where tP is the tangent vector defining the direction of robot movement

tP = fuP =
dfP
duP

=⇒ x̂P =
GRP0

tP

ltp
ltp =

√
tTP · tP (2.18)

The orientation of the platform is determined by the axis ŷP , which is collinear with the normal
vector nP to the path (Fig. 5). The vector nP is determined by rotation of the tangent vector
using the following rotation matrix

nP = RZ
(π
2

)
·
tP

ltp
=⇒ ŷP =

GRP0 ·
nP

ltp
(2.19)

Fig. 5. Sample desired robot trajectory

The robot platform velocity value depends on length of the tangent vector

∥∥∥GvP
∥∥∥ = ltpu̇P =⇒ u̇P =

v(t)

ltp
(2.20)

where v(t) is the time function defining the value of robot speed. The robot movement along
the given curve was determined by numerical integration of equation (2.20), resulting in the
characteristics of the parameter uP (t).
Equation (2.15), which gives velocities of robot drives, requires that the angular velocity of

the platform will be defined. The angular velocity vector is perpendicular to the πP plane. The
angular velocity matrix GΩP is defined by one parameter ωzp as follows

GΩP =
GRP0 ·

P0ΩP ·
P0RG where P0ΩP = ωzp




0 −1 0
1 0 0
0 0 0



 (2.21)
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where ωzp determines length of the platform angular velocity vector depending on the linear
velocity GvP and the radius of curvature rP of a curve (Fig. 6a)

ωzp =
‖GvP ‖

rP

The radius of curvature rP is the inverse of the curvature of the curve kP determined using
derivatives of the parametric function fP

rP =
1

kP
where kP =

‖fuP × fuuP ‖

‖fuP ‖3

where fuuP is the second derivative of the curve parametric function fP relative to the parameter
uP = d

2fP/du
2
P .

To determine the position and orientation of the platform, the desired trajectory frame {P0}
and the curve function fP must be defined. By specifying the v(t) platform velocity characteri-
stics, the platform velocities needed to simulate the robot motion will be obtained.

3. Results

In order to prepare simulation of the robot movement, the ground surface has been defined. It
was determined as a spline surface on the basis of control set points. The control point grid was
evenly spaced relative to the x̂G and ŷG axis. The height of control points along ẑG axis were
chosen randomly in the range between [−0.2m, 0.2m]. In this way, the surface of the ground
consists of unevenness contained in this range of values (Fig. 7). The surfaces of the wheels were
modelled as toruses with a radius equal to the real radius of the robot wheels.

The system defining the given trajectory of the {P0} platform was defined as follows

{P0} :
GRP0 = I3

GpP0 = [0, 0, 0.6m]
T

In the {P0} system, the platform path was determined using a spline curve made of checkpoints.
The checkpoints were defined as in Fig. 5, along straight line segments and the arc with a radius
of 1.5m. Figure 6b shows the curvature of the kP platform path, which was used to determine
the µICR trajectory and the instantaneous center of rotation of the ICR platform (Fig. 6a).

A constant robot operational speed v(t) = 0.5m/s was assumed. From relationships (2.17)
and (2.21), velocities of the task variables Ẋ were obtained. Scripts were built in MATLAB
to integrate numerically equations of motion (2.20). In each subsequent step of the integration
algorithm, for a given platform location (determined from equation (2.16)) the contact points
using contour equations (2.1) where determined. Equations (2.15) gave the remaining velocities
of the robot variables θ̇i. Simulation of 15 seconds of the platform movement was carried out. A
visualization of the robot movement is shown in Fig. 7. The red curves determine the trajectories
of the contact points of all robot wheels.

Figure 8 presents a graph of displacement of s1 rear limbs. The displacement differences of
the cylinders in the front limbs were slightly different, shifted in time because the wheels moved
along similar paths. From the obtained characteristics, the maximum value of s1max = 0.4664m
and the minimum s1min = 0.3887m were determined.

Figure 9 is a graph of the obtained variable velocities ṡ1 for the rear limbs. As before, they
present the key data such as extreme values.

A maximum drive speed of ṡ1max = 0.1239m/s was obtained. The characteristics shown
allow one you to plan the robot path as well as change it due to drive restrictions.
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Fig. 6. (a) Specified path and instantaneous centre of rotation of the robot platform, (b) curvature of
the platform path

Fig. 7. The result of simulation of motion of a wheeled-legged robot

Fig. 8. Runs of the linear actuator displacement



Simulation of motion of a mobile robot on uneven terrain 551

Fig. 9. Runs of the linear actuator velocities

4. Conclusions

A robot movement along a given path has been described. Simulation results are kinematic
characteristics of robot drives. The presented method allows verification of displacement and
velocities of robot actuators. Using the results, the particular robot drives can be chosen during
the design process. With the existing prototype, the simulation allows verification of the given
trajectory and its possible modification.

The method can be implemented to robot prototyping. A terrain map, in the form of a point
cloud, can be obtained using a laser scanner. It was shown that the grid of points can be used to
model a smooth ground surface. The simulation results allow one to select such drive velocities
to minimize the wheel slip.
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